
US NDC Modernization
SAND-xxxx
Unclassified Unlimited Release
December 2014

US NDC Modernization Iteration E1
Prototyping Report: User Interface
Framework

Version 1.1

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20635R

SAND-xxxx Page 2 of 23

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

SAND-xxxx Page 3 of 23

SAND-xxxx
December	2014

US NDC Modernization Iteration E1 Prototyping Report:

User Interface Framework

Randall	R.	Lober

Version	1.11
Sandia	National	Laboratories

P.O.	Box	5800
Albuquerque,	New	Mexico		87185

ABSTRACT

During	the	first	iteration	of	the	US	NDC	Modernization	Elaboration	phase	(E1),	
the	SNL	US	NDC	modernization	project	team	completed	an	initial	survey	of	
applicable	COTS	solutions,	and	established	exploratory	prototyping	related	to	
the	User	Interface	Framework	(UIF)	in	support	of	system	architecture	definition.	
This	report	summarizes	these	activities	and	discusses	planned	follow-on	work.

REVISIONS DECEMBER 2014

SAND-xxxx Page 4 of 23

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 3/18/2014 US	NDC	Modernization	Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 5 of 23

TABLE OF CONTENTS

US NDC Modernization Iteration E1 Prototyping Report: User Interface
Framework .. 3

Abstract ... 3

Revisions ... 4

Table of Contents .. 5

1. Overview ... 7

2. Schedule.. 7

3. Motivation .. 8

4. User Interface Framework .. 8

4.1. Definition ..8

4.2. Design Goals ...8

4.3. Constraints..9

4.4. Iteration E1 Prototyping Activities...9

4.4.1. Initial COTS Survey ...9

4.4.1.1. NetBeans UIF...10

4.4.1.1.1. NetBeans UIF and Swing Widget Toolkit ...11

4.4.1.1.2. NetBeans UIF and JavaFX Widget Toolkit ..12

4.4.1.2. Eclipse UIF and JFace Widget Toolkit ...12

4.4.1.3. Qt Creator UIF and Qt Widget Toolkit..13

4.4.1.4. wxWidgets Widget Toolkit...14

4.4.1.5. XUL Widget Toolkit..15

4.4.2. Exploratory Prototyping...15

4.4.2.1. Exploratory Prototype: NetBeans UIF using Swing Widgets16

4.4.2.1.1. Configuring NetBeans for Development ..16

4.4.2.1.2. Extending the Prototype for Seismic Waveform 2D Plotting......................17

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 6 of 23

4.4.2.1.3. Evaluating Concurrency within Prototype Display Widgets18

4.4.2.1.4. Enabling and Evaluating Netbean’s RCP Plugin Usage18

4.4.2.1.5. Assessing Usability, Performance, and Customization of the Prototype19

4.4.2.1.6. Conclusions on the Prototype and NetBeans RCP20

4.5. Follow-On Work..21

Appendix A. Supporting Tables ... 22

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 7 of 23

1. OVERVIEW

The	US	NDC	Modernization	project	statement	of	work	identifies the	definition	of	
a	modernized	system	architecture	as	a	central	project	deliverable.		As	part	of	the	
architecture	definition	activity,	the	Sandia	National	Laboratories	(SNL)	project	
team	has	established	an	ongoing,	software	prototyping	effort	to	support	
architecture	trades	and	analyses,	as	well	as	selection	of	core	software	
technologies.

During	the	first	iteration	of	the	US	NDC	Modernization	Elaboration	phase	(E1),	
spanning	Q1	- Q2	FY2014,	the	prototyping	effort	included	initial	COTS	surveys	
and	exploratory	prototyping	addressing	three	core	elements	of	the	system	
architecture:

1. The	Common	Object	Interface	(COI) provides	the	system	and	research	
tools	with	access	to	persistent	data	via	an	abstraction	of	the	underlying	
storage	solutions.

2. The	processing	control	framework provides	for	the	definition,	
configuration,	execution	and	control	of	processing	components	within the	
system,	supporting	both	automated	processing	and	interactive	analysis.

3. The	User	Interface	Framework (UIF) provides	a	flexible	platform	for	the	
definition	of	extensible	graphical	user	interface	(GUI)	components	&	
composition	of	GUI	displays	supporting	users	of	the	system	and	research	
tools.

This	report	summarizes	the	iteration	E1	prototyping	activities	of	the	SNL	project	
team	specific	to	the User	Interface	Framework.	E1	prototyping	activities	for	the	
processing	control	framework	and	COI	are	described	in separate	reports.

2. SCHEDULE

This	report	summarizes	the	UIF	prototyping	work	completed	during	the	three-
month	period	from	December	2013	to February	2014, based	on	the	following	
schedule.

Period Activity

December 2013 OSS/COTS survey

January – February 2014 Initial Exploratory Prototyping

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 8 of 23

3. MOTIVATION

Prototyping	provides	input	critical	in	the	definition	of	the	system	architecture,	
supporting	selection	of	core	software	development	languages	and	technologies,	
identification	of	architecture	constraints	& assumptions,	and	definition	of	high-
level	design	patterns.	In	addition,	the	prototyping	activity	provides	a	foundation	
for	development	of	the	executable	architecture	deliverable.	

4. USER INTERFACE FRAMEWORK

4.1. Definition

The	User	Interface	Framework	(UIF)	is	a software	mechanism1 providing	a	
standard	architecture,	a	set	of	application	programming	interfaces	(APIs),	and	a	
runtime	environment	supporting	development,	integration	and	deployment	of	
modular,	extensible	graphical	user	interface	(GUI)	software	components.	The	
UIF	framework	consists	of	the	following	separate	components:

 UIF	Framework	development	environment	and	standardized	architecture

 A	widget	toolkit	providing	standard	graphical	elements	for	GUI	display	
development

4.2. Design Goals

 Provide	a	single	unified	UIF	to	be	used	for	all	internal	system displays.

 Support	a	consistent, modern	user	interface	standard	for	all	system
graphical	user	interface display	elements.

 Support	a	responsive	and	customizable	user	interface.

 Provide	a	modular,	component-based	architecture	for	development,	
integration,	and	deployment	of	extensible	GUI	components.		Support	the
multiple	application	languages	defined	for	the	modernized	system.

																																																												
1 J.	Burns, et	al,	System	Architecture	Document Version	1.0	DRAFT,	Sandia	National	Laboratories,	Albuquerque,	
New	Mexico	87185,	March	2014,	p.	14.

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 9 of 23

4.3. Constraints

 Performance: the	UIF will	support	the	user	interface	performance	
requirements

 Extensibility: the	UIF will	enable	developers	to	build new	GUI	features and	
code	plugins	(via	standard	APIs). The	UIF	cannot	preclude	the	ability	to	
access	underlying	system	functionality	via	a	command-line-interface	(CLI).

 Interfaces	with	other	frameworks: the	UIF will	interoperate	with	the	COI	
(retrieval	and	storage	of	configuration	and	processing	results)	and	the	
processing	control	framework	as	appropriate.

 Reuse: the	UIF	will	prefer	Open	Source	Software	(OSS)	and	other	Commercial	
Off-The-Shelf	(COTS)	solutions	to	custom	software	development	where	
available.

 Standardization: the	UIF	will	prefer	solutions	based	on	open	standards	
wherever	possible.

4.4. Iteration E1 Prototyping Activities

The	E1 prototype	work	focused	on	ensuring	an	array	of	UIF	candidate	solutions	
that	meet	at	least	a	majority	of	the	design	goals	and	constraints	outlined	for	the	
UIF were	considered.	Methods	for	identifying	the	survey	set	for	UIF	candidate	
solutions	included	capability,	industry	presence,	and	local	development	
experience	within	the	broader	Sandia	software	community.

This	approach	involved	identifying	and	surveying	a	moderately	sized	COTS	set	of	
UIF	solution	candidates,	then	applying	the	knowledge	gained	to	execute	a	hands	
on	evaluation	with	the	selected	UIF	solution	candidate	from	the	survey	
evaluation	stage.	

4.4.1. Initial COTS Survey

For	the	UIF	prototype	E1	effort,	two	main	considerations	were	key:	1)	
identifying	an	application	framework	(UIF)	and	2)	identifying	an	accompanying	
graphical	widget	toolkit	to	deploy.	A	given	UIF	may	be	able	to	accommodate	
more	than	one	graphical	widget	toolkit	type. This	means	that	in	the	evaluation	
documented	below	there	are	two	different	evaluations	of	the	NetBeans UIF:	the	
first	paired	with	the	Swing	widget	toolkit	and	the	second	paired	with	the	JavaFX	
widget	toolkit.

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 10 of 23

UIF Solution Widget toolkit UIF language
NetBeans Swing Java (RCP)

NetBeans JavaFX 2 Java (RCP)

Eclipse JFace (SWT) Java (RCP)

Qt Creator Qt C++

N/A wxWidgets C++

N/A XUL XML & Java

Additional	details	describing	the	UIFs	and	widget	toolkit	combinations	that	were	
considered	is	contained	in Table	1. UIF	and	Widget	toolkit Summary in Error!	
Reference	source	not	found..

Multiple	communities	of	developers	exist	with	strongly	preferred	UIF	
application	frameworks	and	widget	toolkit	solutions	that	can	meet	most	of	the	
design	goals,	constraints,	and	requirements	for	the	modernized	system.	No	
single	UIF	candidate	solution	meets every	design	goal	out	of	the	box	(specifically	
the	CLI	availability	constraint),	however	it	is	estimated	that	the	strongest	
candidates	could	be	extended	to	meet	all	the	design	goals.

Some	of	the	surveyed	candidates	are	considered	rich	client	platforms2 (RCP),	
which	provide	additional	development	and	deployment	advantages	such	as	the	
enhanced	ability	to	integrate	and	deploy	independent	software	components	
while	the	RCP	developers	manage	the	cross-platform	support	burden.	

Of	the	most	promising	top	three	UIF solution	candidates,	two	were	of	the	RCP	
type	(NetBeans and	Eclipse).

4.4.1.1. NetBeans UIF

NetBeans is	the	strongest	candidate	within	the	Java	oriented	UIF	solutions.	
NetBeans is	under	active	development	(Oracle)	and	has	extensive	support	
options	and	documentation.	

The	NetBeans UIF	provides	all	the	advantages	of	an	RCP	- specifically	the	ability	
to	leverage	the	presence	of	NetBeans on	most	modern	versions	of	major	
compute	platforms	such	as	Windows,	Linux,	Solaris,	and	Mac	OS	X. If	the	
preferred	compute	platform	of	choice	is	not	listed	the	source	code	to	NetBeans is	
available	for	download	and	compilation.	

																																																												
2 http://en.wikipedia.org/wiki/Rich_client_platform

http://en.wikipedia.org/wiki/Rich_client_platform

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 11 of 23

As	an	RCP,	NetBeans enables	the	efficient	development,	integration,	and	
deployment	of	plugins	and	templates.	This	provides	advantages	to	a	
development	team	that	may	be	geographically	dispersed	as	it	enables	the	rapid	
sharing	of	code	plugins	and	templates.	The code	plugins	also	allow the	option	of	
being	deployed from	a	locally	controlled	server.

The	NetBeans platform	offers	reusable	services	common	to	desktop	applications,	
allowing	developers	to	focus	on	their	application	specific	code.	These	reusable	
services	include	user	interface	management	(full	suite	of	menus	and	toolbars),	
user	settings	management	(user	customization),	storage	management	(saving	
and	loading	any	kind	of	data),	window	management,	wizard	framework	
(supporting	step	by	step	dialogs),	progress	reporting,	NetBeans Visual	Library	
(extensible	Java	widget	library),	and	an	integrated	development	tool	suite	
(including	grammar	sensitive	editors).

NetBeans has	historically	supported	the	Swing	widget	toolkit	although	the	next	
generation	widget	toolkit	JavaFX	has	been	available	for	a	few	years	(starting	
with	NetBeans 6.1) and	will	become	the	default	supported	widget	toolkit	for	
NetBeans at	some	point	in	the	future. Oracle	is	committing	to	supporting	both	
Swing	(as	part	of	the	Java	SE	specification)	and	JavaFX	for	the	foreseeable	future.

The	NetBeans deployment	support	is	predominately	targeted	to	desktop	
applications.	As	an	RCP,	NetBeans is	held	in	high	regard	by	the	Sandia	
development	teams	that	were	surveyed.	NetBeans has	earned	the	reputation	of	
being	a	very	efficient	UIF	to	configure	for	new	development	efforts,	having	a	
reasonable	learning	curve	for	developers.	As	a	development	environment,
NetBeans was	seen	as	slightly	less	reliable	or	robust	than	Eclipse.

4.4.1.1.1. NetBeans UIF and Swing Widget Toolkit

The	Swing	widget	toolkit	has	extensive	market	presence	and	active	developer	
communities.	The	Swing	widget	toolkit	is	beginning	to	see	some	slowdown	in	
developer	discussion	threads	as	the	newer	JavaFX	2.0	is	gaining	more	attention.	
This	would	pose	more	of	a	concern	if	Swing	did	not	easily	integrate	into	code	
bases	alongside	JavaFX	development.

Swing	is	currently	the	primary	Java	GUI	widget	toolkit	providing	a	more	
sophisticated	set	of	GUI	components	than	earlier	generation	Java	GUI	widgets	
(Abstract	Window	Toolkit	- AWT).	In	addition	to	expected	GUI	components	such	
as	buttons,	check	boxes,	and	labels,	Swing	provides	more	advanced	components	
such	as	tabbed	panels,	scroll	panes,	trees,	and	lists.	Swing	components	are	
platform	independent.

Pairing	the market	share	dominant	Swing	widget	toolkit	with	the	NetBeans UIF	
results	in a	very	strong	candidate.

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 12 of 23

4.4.1.1.2. NetBeans UIF and JavaFX Widget Toolkit

The	JavaFX	widget toolkit	is	gaining	market	presence	and	is	the	most	modern	of	
the	Java	widget	toolkits.	JavaFX	does	not	currently	support	Solaris.

While	an	attractive	toolkit,	it	is	not	surprising	that	it	has	its	share	of	growing	
pains	related	to	the	new	code	base.	A	pertinent	example	is	the	new	JavaFX	2D	
plotting	capability	- its	feature	set	and	appearance	are	top	rate.	The	issue	is	the	
design	of	the	new	plotting	capability	made	the	assumption	that	every	point	on	a	
curve	is	a	separate	object	- this	decision	drastically	impedes	scalability	for	any	
curve	plotting	with	more	than	1000	points.

The	JavaFX	widget	toolkit	is	a	decent	widget	toolkit	and	may	become	the	widget	
toolkit	of	choice	in	the	near	future.	At	this	time	it	is	still	changing	rapidly	and	
growing,	as	such	it	has	some	challenges	and	is	not	as	stable	as	Swing	or	
JFace/SWT.

The	combination	of	NetBeans UIF	and	JavaFX	widget	toolkit	will	eventually	
become	the	candidate	of	choice,	but	that	time	is	not	yet	here.

4.4.1.2. Eclipse UIF and JFace Widget Toolkit

Eclipse/JFace	is	a	strong	runner	up	to	NetBeans/Swing	among	the	Java	oriented	
UIF	solutions;	and	the	JFace/SWT3widget	toolkit	has	extensive	market	presence	
and	developer	communities.	Eclipse	is	under	active	development	and	has	
extensive	support	options	and	documentation.	IBM	has	contributed	significantly	
to	the	Eclipse	open	source	effort	and	continues	to	help	drive	its	development.

The	Eclipse	UIF	also	provides	all	the	advantages	of	an	RCP	- specifically	the	
ability	to	leverage	the	presence	of	Eclipse	on	most	modern	versions	of major	
compute	platforms	such	as	Windows,	Linux,	and	Mac	OS	X..	As	an	RCP,	Eclipse	
also	enables	the	efficient	development,	integration,	and	deployment	of	plugins	
and	templates.

JFace/SWT	is	a	very	popular	development	widget	toolkit	with	millions	of	
downloads	of	their	open	source	software	base.	General	comments	among	the	
development	community	indicate	stability	is	a	higher	priority	among	the	
committing	and	contributing	community	of	Eclipse	as	opposed	to	rapid	
innovation	and	change.	SWT	will	leverage	native	platform	widgets	when	
possible	and	this	can	help	boost	performance	compared	to	Swing	- however	
Swing	performance	has	increased	every	year	so	this	may	no	longer	be	a	strong	
consideration.	Due	to	a	design	decision	by	Eclipse,	customization	is	subject	to	

																																																												
3 Standard	Widget	Toolkit	(www.eclipse.org/swt/)

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 13 of 23

constraints	imparted	by	that	same	use	of	native	platform	widgets.	When	
compared	to	the	most	recent	JavaFX	2.0	widget	sets,	the	JFace/SWT	widget	
toolkit	feels	slightly	dated.

The	Eclipse	platform	offers	comparable	reusable	services	common	to	desktop	
applications,	allowing	developers	to	focus	on	their	application	specific	code.	

The	Eclipse	deployment	support	is	targeted	to	desktop	applications	and	
browsers.	Eclipse	is	a	solid	RCP,	although	its	reputed	setup	difficulty	is	hindering	
its	broader	adoption.	As	a	development	environment	(once	configured),	Eclipse	
is	viewed	as	a	very	strong	candidate.

Eclipse	has	garnered	the	reputation	of	being	a	challenging	UIF	to	configure	for	
new	development	efforts,	having	a	steep	learning	curve	for	developers.	This	
assessment	is	shared	among	all	the	Sandia	development	teams	we	surveyed	for	
background	information. JFace/SWT	is	a	strong	widget	toolkit	candidate.

The	combination	of	Eclipse	and	JFace/SWT	makes	a	solid	candidate	that is	still	
popular	and	very	proven	over	time.

4.4.1.3. Qt Creator UIF and Qt Widget Toolkit

Qt	Creator	is	the	strongest	candidate	among	the	C++	oriented	UIF	solutions,	and	
the	Qt	widget	toolkit	has	strong	market	presence	and	engaged	developer	
communities.	Qt	is	under	active	development	(Digia)	and	has	extensive	support	
options	and	documentation.	With	Qt	5,	governance	of	the	Qt	framework	
development	has	moved	to	the	open	source	community	at	qt-project.org.

While	not	a	Java	RCP,	Qt	Creator	does	have	standard	supported	builds	for	most	
modern	versions	of all	the	main	compute platforms	and	additionally	the	main	
mobile	platforms	such	as	Windows,	Linux	(32	and	64	bit	precision),	and	Mac	OS	
X,	iOS,	and	Android.

Qt	is	a	very	popular	development	cross-platform	widget	toolkit	with	a	large	
active	development	community.	Of	note	is	the fact	that	Qt	is	the	UIF	used	to	
develop	and	deploy	the	KDE	Linux	windowing	system	(6	million	lines	of	code	not	
including	Qt).	The	KDE	development	community	is	the	second	largest	Free	
Software	community	behind	the	Linux	kernel	community.	The	Qt	UIF	has	a	
reputation	for	a	stable	API.	Qt	also	powered	the	Symbian	mobile	operating	
system	previously	used	by	Nokia	(Nokia	sold	Qt	rights	and	licensing	to	Digia	in	
2012).	Qt	widgets	are	native	and	hence	quite	high	performance.	From	Sandia	
development	team	interviews	Qt	was	ranked	as	having	the	strongest	cross-
platform	consistent	look-and-feel	for	GUI	behavior	(when	compared	to	Eclipse).

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 14 of 23

The	Qt	Creator	UIF	offers	comparable	reusable	services	common	to	desktop	
applications,	allowing	developers	to	focus	on	their	application	specific	code.

The	Qt	Creator	deployment	support	is	targeted	to	desktop	applications	and	
mobile	operating	systems.	As	a	development	environment,	Qt	Creator	is	viewed	
as	a	strong	candidate	with	a	reasonable	developer	learning	curve.	Qt	is	a	strong	
widget	toolkit	candidate.

The	combination	of	Qt	Creator	and	Qt	makes	a	strong	solution	candidate	if	your	
solution	space	leans	toward	C++.

4.4.1.4. wxWidgets Widget Toolkit

wxWidgets	(formerly	wxWindows)	is	a	C++	widget	toolkit	and	tools	library	for	
creating	GUIs	for	cross-platform	applications.	It	is	not	an	RCP	or	a	true	UIF	in	the	
sense	of	Qt	Creator.	wxWidgets	is	under	active	development	(open	source	
community)	and	has	open	source	and	commercial	support	options	and	
documentation.	

A	recently	contributed	package	(NuGet) now	supplies	a	template	allowing	
developers	to	build	wxWidgets	applications	within	Microsoft	Visual	Studio.	
wxWidgets	supports	GUI	builds	on	the	main	compute	platforms	such	as	
Windows	(all	versions	since	Windows	NT),	Linux	(all	modern	versions),	other	
Unixes,	and	Mac	OS	X	(all	modern	versions).

The	wxWidgets	widget	toolkit	offers	comparable	reusable	services	common	to	
desktop	applications,	allowing	developers	to	focus	on	their	application	specific	
code.	wxWidgets	has	a	reasonable	community	of	developers,	although	not	on	a	
par	with	the	Java	RCP	candidates	or	Qt.	

wxWidgets	is	a	native	mode	toolkit	in	that	it	provides	a	thin	abstraction	to	a	
platform’s	native	widgets,	contrary	to	emulating	the	display	of	widgets	using	
graphic	primitives.	Calling	a	wxWidgets	native	element	on	the	target	platform	
will	tend	to	result	in	a	“more”	native	looking	interface	than	toolkits	based	on	
Java	Swing	toolkits.	This	is	also	reputed	to	offer	performance	benefits	(when	
compared	to	Swing).	wxWidgets	is	not	limited	solely	to	GUI	development;	it	also	
includes	an	inter-process	communication	layer	and	socket	networking	
functionality.

The	wxWidgets	widget	toolkit	has	an	active	if	smaller	community	although	as	a	
potential	candidate	it	would	be	a	second	tier	contender.

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 15 of 23

4.4.1.5. XUL Widget Toolkit

XUL	(pronounced	ZOOL)	stands	for	XML	User	Interface	Language.	XUL	is	a	user	
interface	markup	language	developed	by	Mozilla.	As	XUL	is	implemented	as	an	
XML	dialect,	it	allows	for	the	construction	of	graphical	user	interfaces	written	in	
a	similar	manner	as	web	pages.	XUL	can	be	used	to	construct	cross-platform	
applications	such	as	Mozilla	Firefox.	The	layout	engine	Gecko	interprets	XUL	and	
renders	the	user	interface.	XUL	relies	on	multiple	existing	web	standards	
including	CSS,	JavaScript,	and	DOM.	Developers with	backgrounds	in	web	page	
design	find	XUL	relatively	easy	to	learn.

XUL	has	no	formal	specification	and	does	not	operate	with	non-Gecko	
implementations.	It	does	use	an	open-source	version	of	Gecko.	While	XUL	is	not	
an	RCP	or	a	true	UIF,	it	provides	an	experimental	XULRunner	build	to	allow	
developers	to	build	their	applications	on	top	of	the	Mozilla	application	
framework.

XUL	defined	widgets	are	portable	and	can	move	easily	between	any	platforms	
that	support	Mozilla	applications.	

The	XUL	widget	toolkit	offers	a	common	set	of	reusable	services	useful	to	
desktop	applications,	although	it	is	not	clear	of	the	depth	of	these	services	and	
features	are	really	comparable	with	the	Java	RCP	candidates,	Qt,	or	even	
wxWidgets.

XUL	deployment	support	is	predominately targeted	to	browsers	and	some	
desktop	applications.

The	CEO	of	Mozilla	has	recently	made	public	comments	indicating	interest	in	
moving	away	from	XUL	and	toward	an	Android	based	tool	- this	information	
alone	would	likely	disqualify	XUL	as	a	viable	future-proof	candidate.

4.4.2. Exploratory Prototyping

In	addition	to	online	background	research	to	help	with	initial	candidate	
rankings,	the	UIF	prototyping	team	conducted	interviews	of	multiple	Sandia	
software	teams	that	use	a	variety	of	the	UIF	solution	candidates	across	different	
technical	discipline	areas.

As	an	additional	objective	for	the	interviews	with	the	various	Sandia	software	
teams,	the	UIF	prototyping	team	searched	for	potential	partner	Sandia	software	
teams	who	would	be	willing	to	provide	consulting	and	startup	support	for	the	
prototyping	effort.	This	approach	was	viewed	as	the	most	efficient	way	to	
leverage	the	limited	labor	resources	and	generate	the	maximum	level	of	insight	
in	the	limited	time	available.	Out	of	the	Sandia	teams	interviewed,	three	teams	

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 16 of 23

were	developing	(currently	released	to	customers)	Java	Swing	applications. One	
of	the	three	teams	employed	NetBeans,	one	team	used	Qt	Creator	and	Qt,	and	
one	team	was	using	Eclipse	and	JFace/SWT.	

Out	of	the	COTS	survey	set	of	UIF	candidate	solutions	a	more	extensive	
evaluation	was	made	of	the	NetBeans UIF	using	the	Java	Swing	widget	toolkit	
candidate.

For	this	evaluation	the	UIF	prototyping	team	partnered	with	a	Sandia	software	
team	developinga	Java	Swing	application	using	the	NetBeans UIF.	

The	anticipated	activities	for	the	more	in	depth	exploratory	prototyping	were	to	
construct	several typical	seismic	style	GUI	displays	and	in	the	process	assess	the	
effectiveness	of	the	selected	UIF	for

 Usability (subjective	but	important	insight	capture)

 Performance

 Integration	effort

 Plugin	API	standardization	and	support

 Inter	process	communication

 Configuration	and	setup	effort

4.4.2.1. Exploratory Prototype: NetBeans UIF using Swing Widgets

A	local	UI	development	project	at	Sandia	was	interested	in	collaborating	with	the	
US	NDC	Modernization	prototyping	effort.	This	collaboration	was	advantageous
to	the	US	NDC	effort	as	it	would	help	us	rapidly	bootstrap	into	a	functional	
framework	that	already	had	several	interesting	graphical	widgets	close	to	ones	
that	we	were	wanting	to	evaluate	- these	widgets	included	tree	and	tabular	data	
display	widgets	and	a	zooming	World	Wind	mapping	widget.	The	work	would	
entail	the	integration	of	locally	available	software	components	(such	as a	2D	
waveform	trace	plotter) from	other	environments	and	would	exercise	the	
integration	and	extensibility	of	both	the	project’s	software	architecture	and	the	
NetBeans development	environment.

4.4.2.1.1. Configuring NetBeans for Development

Our	target	prototyping	environment	was	an	Ubuntu	Linux	environment	
expected	to	be	somewhat	similar	to	the	delivered	system’s	eventual	deployment
environment.	 Since	the	development	environment	was	a	true	RCP	(NetBeans),	

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 17 of 23

we	had	the	advantage	of	being	able	to	develop	on	our	choice	of platforms.		
Current	development	platforms	for	the	Sandia	project	include	Windows	and	Mac	
OS	X	workstations with	deliveries	of	the released	application	to	a	Windows	
platform	and	deliveries	of	a	related	code	project	to	a	Linux	environment.	Our	
plan	was	to	develop	on	any	of	the	Windows	or	Mac	platforms	and	deliver	to	the	
Linux	platform. We	utilized	the	Sandia	project’s code	repository	to	build	a	new	
prototype	application	(proto-usndc)	based	on	the	framework’s existing	feature	
set.

Since	the	Sandia	project	already	had	a	complete	development	environment	
operational,	the	initial	configuration	management	setup,	code	build	system,	and	
platform	configuration	was	very	smooth	and	straightforward.	This	capability	
would	imply	the	introduction	of	new	software	developers	would	be	an	efficient	
and	straightforward	exercise	using	this	system.	

Rating:	“Significantly	above	average” for	the	environment	configuration	and	
setup	effort	at	this	initial	stage	of	the	effort.	

4.4.2.1.2. Extending the Prototype for Seismic Waveform 2D Plotting

The	proto-usndc prototype	application	had	many	widget	elements	of	interest
and	applicable to	our	evaluation	of	NetBeans and	Java	Swing	for	seismic	analysis	
applications	(several	tabular,	time	based	and	tree	structure	data	presentation	
displays,	and	a	real	time	mapping	display).	

The	proto-usndc prototype	application	did	not	have	any	2D	plotting	capability	
sufficient	to	support	the	display	of	waveforms.	Another Sandia	UI	software	
project did	have	a	reasonable	waveform	plotting	capability	implemented	in	
Swing,	so	the	team	decided	to	use	that	project’s	plotting	code	in	the	proto-usndc	
prototype.		After	consulting	with	the	entire	team	on	the	code	inheritance	layout	
for	the	proto-usndc prototype,	the	initial	proto-usndc application	was	configured	
to	support	five	existing	display	widgets	(tree	viewer,	timeline	viewer,	waveform	
viewer,	globe	viewer,	table	data	viewer).	This	effort	involved	about	three	
workdays.

The	existing	2D	waveform-plotting	module	was	then	modified	to	adapt	to	the	
Sandia	project’s	generalized	data	object	(gdo)	structure	that	is	used	to	manage	
all	the	displayed	objects	in	the	GUI.	The	gdo	structure	is	a	very	capable	design	
that	enables	concurrency	throughout	the	GUI	for	different	views	and	display	
widgets	of	the	same	data	in	different	formats.	

Once	the	waveform-plotting	module	was	adapted	to	the	gdo	structure,	the	new	
proto-usndc prototype	application	was	able	to	display	multiple	waveform	
channels	stacked	vertically	(one	waveform	channel	for	each	imported	waveform	
data	object).	The	amount	of	effort	it	took	an	experienced	developer	to	refactor	

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 18 of 23

the	waveform-plotting	module	to	accommodate	gdo	objects	was	approximately	
two	workdays.

Rating:	“Significantly	above	average”	for	integration	ease	and	rapid	prototyping	
capability,	code	reuse	efficiency,	and	effectiveness	of	the	gdo	data	structure.

4.4.2.1.3. Evaluating Concurrency within Prototype Display Widgets

Once	the	waveform-plotting	capability	was	added	into	the	new	proto-usndc
prototype	application,	the	existing	gdo	architecture	handled	the	management	of	
data	concurrency	among	the	display	widgets	being	used.	

Every	defined	gdo	object	was	visible	within	each	display	widget.	When	the	user	
selected	a	particular	gdo	object	in	one	display	widget,	the	object	would	
immediately	highlight	in	the	other	display	widgets	resulting	in	an	effective	visual	
feedback	pattern	to	the	user.	

The	concurrency	of	the	data	objects	among	the	different	graphical	perspectives	
reinforces	the	different	attributes	of	the	objects	and	more	effectively	informs	the	
user	of	the	nature	and	available	parameters	associated	with	the	data	objects	
being	evaluated	or	analyzed.	The	effort	to	complete	this	concurrency	capability	
was	captured	in	the	effort	to	enable	the	gdo	object	data	structures	in	the	
previous	task.

The	proto-usndc application	was	a	single-threaded	NetBeans application	and	
due	to	this	and	the	available	time	an	assessment	of	inter-process	communication	
was	not	performed	for	this	prototype.

Rating:	N/A	inter-process	communications.

Rating:	“Significantly	above	average”	data	concurrency	and	effective	display	
widget	usage	reinforcing	data	relationships	with	alternative	data	viewpoints.

4.4.2.1.4. Enabling and Evaluating Netbean’s RCP Plugin Usage

NetBeans includes	modules	to	enable	user	controlled	options	and	external	code	
integration	through	plugins	and	templates.	Specific	exercises	were	completed	to	
test	the	plugin	capabilities	of	NetBeans and	the	proto-usndc design.	

A	new	signal	filter	was	defined	in	the	vehicle	of	a	code	plugin.	Once	the	user	
imported	a	series	of	seismic	waveforms,	the	default	proto-usndc filter	is	
employed	(this	filter	can	be	raw	or	“no	filter”).	

Once	the	new	plugin	was	constructed	and	checked	into	the	proto-usndc version	
control	system,	it	became	available	as	a	NetBeans module	and	was	visible	

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 19 of 23

through	the	Plugins	menu	item.	The	user	selects	the	Plugins	menu	item	and	is	
asked	to	download,	install,	activate,	deactivate,	uninstall,	or	delete	one	or	more	
plugins.	Proto-usndc remembers	which	plugins	have	been	activated,	
downloaded,	installed,	or	uninstalled.	

When	the	user	elects	to	download	a	new	plugin,	available	plugins	are	updated	
automatically	and	are	visible	via	the	NetBeans Update	Center	(which	can	be	
configured	to	be	simply	a	local	server	or	file	system).	Once	the	desired	plugin	is	
downloaded,	the	user	selects	to	install	(the	user	is	also	prompted	for	a	license	
agreement	affirmation).	Then	the	user	can	activate	the	new	plugin	and	it	
becomes	live,	creating	new	GUI	elements	per	its	definition	live	while	the	current	
application	is	running.	The	application	can	immediately	access the	new	features.	
No	restarting is	required.	In	our	case	the	new	plugin	introduced	a	user-
controlled	Butterworth	filter	capability	to	enhance	the	existing	waveform	data	
objects.

Rating:	“Significantly	above	average”	for	plugin	API	standardization	and	support,	
live	code	updating,	and	central	plugin	deployment	and	tracking.

4.4.2.1.5. Assessing Usability, Performance, and Customization of the Prototype

Overall	the	usability	of	proto-usndc exceeded	the	team’s	expectations.	The	
modern	GUI	elements	were	effective,	usable,	and	attractive.	Many	features	were	
available	simply	due	to	the	NetBeans RCP	that	was	supporting	the	application.	
These	features	included	the	ability	to	customize	window	size,	window	position,	
and	whether	a	window	was	docked	or	floating	disconnected	from	the	rest	of	the	
proto-usndc GUI.	

The	user	could	modify	the	relative	position	of	windows	by	dragging	them	to	
different	snap	locations	on	the	floating	set	of	connected	display	widgets	or	the	
user	could	simply	“tear	off”	any	given	display	widget	and	move	it	to	a	location	of	
their	choice	anywhere	on	the	screen.	The	application	includes	a	command	to	
reset	the	graphical	display	to	its	default.	Additional	customization	capabilities	
included	the	ability	to	set	font	sizes	and	background	panel	colors	and	control	
proxy	settings	for	network	access	to	the	NetBeans Update	Center	server.

The	GUI	performance	is	a	subjective	ranking.	 However, in	the	team’s	view	the	
performance	was	very	solid,	though	the	amount	of	test	data	was	minimal	at	this	
time.	The	graphics	performance	was	considered	in	the	resizing	and	relocating	of	
GUI	display	panes,	the	plotting	and	updating	of	2D	waveform	trace	plots,	and	the	
updating,	zooming,	tiling, and	responsiveness	of	the	globe	3D	mapping	display	
widget.	The	GUI	responded	equally	well	whether	it	was	running	on	a	Windows	7	
native	workstation,	and	Windows	7	VM,	or	on	a	2010	MacBook	Pro	running	OS	X	
10.8.	We	were	unable	to	complete	the	performance	testing	within	the	Ubuntu	

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 20 of 23

Linux	environment	due	to	Java	graphics	library	complications.	On	the	platforms	
where	the	Java	graphics	libraries	were	operational,	the	performance	was	good.	
The	challenge	of	the	Linux	graphics	libraries	is	addressed	in	the	next	section.

Rating:	“Above	average”	for	usability,	customization,	observed	performance.

4.4.2.1.6. Conclusions on the Prototype and NetBeans RCP

While	the	predominate	impression	of	proto-usndc was	positive,	as	the	prototype	
exercise	began	converging	to	its	end	some	reappearing	issues	began	to	become	
too	frequent	to	be	dismissed	as	anomalies.	The	overall	performance	and	
efficiency	of	NetBeans RCP	application	development	is	evident.	The	environment	
has	delivered	and	would	make	a	solid	solution	for	a	permanent	investment	for	
the	US	NDC	modernization	effort.	The	overall	code	organization	that	was	
inherited	from	the	existing	Sandia	project is	also	very	strong	and	would	make	a	
good	baseline	for	future	development	processes.	

The	impressions	of	Java	Swing	and	its	implementation	within	NetBeans are	all	
very	positive,	and	are	examples of	modern	GUI	design	and	effectiveness even	
allowing	for	the	fact	that	JavaFX	is	slightly	newer.

One	apparent	weakness	that	was	observed in	the	proto-usndc prototype is	the	
complexity	that	was	introduced	to	support	the	3D	mapping	widget	using NASA’s	
World	Wind	Java	module.	When	this	module	is	accurately	configured	it	is	an	
effective	and	welcome	addition	to	the	seismic	analyst’	display	set.	The	key	
phrase	is	“when	it	is	accurately	configured”. In	hindsight	the	solution	should	be	a	
dedicated	distribution	manifest	with	packaged	libraries	installed	in	a	dedicated	
project	directory	that	includes	the	appropriate	OpenGL	jogl	and	gluegen-rt	
libraries	for	every	targeted	platform	proto-usndc is	to	be	deployed	to.	This	issue	
can	be	rectified,	although	at	this	time	this	issue	remains	open.

In	fairness,	the	genesis	of	the	proto-usndc prototype	came	from	a	strong	project	
whose	support	of	their	targeted	platforms	is	very	solid.	The	challenges	we	saw	in	
attempting	to	deploy	the	proto-usndc prototype	to	additional	targeted	platforms	
should	not	be	construed	as	a	significant	risk factor	for this	particular	candidate
in	the	search	for	the	optimum	development	tool	and	end	user	RCP	and	user	
interface.	If	the	US	NDC	Modernization	effort	elects	to	invest	in	NetBeans and	
Swing,	the	relevant	deployment	platforms	will	be	defined	up	front	and	as	new	
dependencies	are	created,	their	deployment	requirements	will	be	captured	and	
resolved	in	a	formal	ongoing	development	process.

Rating:	“Average” for	deployment	and	high	performance	graphics	OpenGL	
configuration	and	setup. Main	difficulty is	the	ability	to	define	and	deploy	the	
specific	set	of OpenGL	graphics	required	jar	files.

TABLE OF CONTENTS DECEMBER 2014

SAND-xxxx Page 21 of 23

Final	conclusion	and	rating:	“Above	average”	for	overall	NetBeans RCP	
effectiveness	and	the	proto-usndc gdo	data	structure	design	and	GUI	impact.	

4.5. Follow-On Work

To	build	context	around	the	results	from	the	initial	E1	prototype	evaluation,	
additional	UIF	prototypes	should	be	pursued.	

Anticipated	follow	on	efforts	will	pursue	a	comparable	evaluation	of	the	Java	
RCP	Eclipse	JFace/SWT	candidate	and	potentially	the	C++	Qt	Creator	Qt	
candidate	if	additional	Sandia	UI	software	development	teams	are	available	for	
consulting	and	collaborative	efforts.

Focus	would	be	on	the	same	design	goals	and	constraints,	although	additional	
evaluation	of	multi-display	performance	and	plugin	management	capability	
would	provide	more	insight.

Additional	E2	prototyping	UIF	investigations should address	the	question	of	
evaluating	the	feasibility	of	a	full	web-based.	Some	promising	solutions	are	
available	(Liferay)	that	need	to	be	assessed	for	viability	of	a	browser	based	UI	
for	the	modernized	system.

A	final	area	of	interest	is	the	investigation	of	viable	methods	to	support	the	CLI	
capability	that	will	accompany	the	GUI	interface	and	how	the	two	systems	will	
interact	and	pose	requirements	on	each	other.

The	development	of	this	prototyping	and	evaluation	data	will	assist	in	the	
eventual	down	selecting	of	a	single	candidate	solution	anticipated	for	the	E3/E4	
executable	architecture	phase.

Page 22 of 23

APPENDIX A. SUPPORTING TABLES

Table	1. UIF	and	
Widget	toolkit
Summary

Candidate
Solution
UIF/widget
toolkit

URL Summary Assessment

NetBeans/Swi
ng

https://netbeans.org/
http://docs.oracle.com
/javase/tutorial/uiswin
g/index.html

Advantages: NetBeans is the leading Java UIF candidate. Swing
widgets integrate alongside JavaFX code. Large community.
Disadvantages: Oracle dependence.

Eclipse/JFace
(SWT)

http://wiki.eclipse.org/
Main_Page
http://wiki.eclipse.org/
JFace
http://www.eclipse.org
/swt/

Advantages: Eclipse is the 2nd place Java UIF candidate. IBM
supported. Very stable. Large community.
Disadvantages: Eclipse learning curve is the most difficult.
JFace/SWT is slightly dated compared to Swing and JavaFX2.

Qt Creator /
Qt

http://qt-project.org/ Advantages: Qt is the leading C++ UIF candidate. GUI widgets
are fast and native: strongest cross platform GUI behavior.
Disadvantages: Not an RCP solution. Smaller community than
Java.

NetBeans/Jav
aFX 2

https://netbeans.org/

www.javafx.com

Advantages: NetBeans is the leading Java UIF candidate.
JavaFX2 has most modern Java GUI elements. Large
community.
Disadvantages: JavaFX2 2D plotting package is beautiful but has
serious scaling issues. Oracle dependence.

NA/wxWidget
s

http://wxwidgets.org/ Advantages: Native mode widget toolkit, also contains inter-
process communication layer
Disadvantages: Not an RCP solution or a UIF - mainly a
standalone widget toolkit. Smaller community.

NA/XUL

https://developer.mozil
la.org/en-US/docs/XUL

Advantages: XML markup language for GUI construction. Quick
study for web designers.
Disadvantages: Not an RCP solution or a UIF - mainly a
standalone widget toolkit. Not a prevalent solution.

https://developer.mozilla.org/en-US/docs/XUL
https://developer.mozilla.org/en-US/docs/XUL
http://wxwidgets.org/
http://www.javafx.com/
https://netbeans.org/
http://qt-project.org/
http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://wiki.eclipse.org/JFace
http://wiki.eclipse.org/JFace
http://wiki.eclipse.org/Main_Page
http://wiki.eclipse.org/Main_Page
http://docs.oracle.com/javase/tutorial/uiswing/index.html
http://docs.oracle.com/javase/tutorial/uiswing/index.html
http://docs.oracle.com/javase/tutorial/uiswing/index.html
https://netbeans.org/

Page 23 of 23

This	is	the	last	page	of	the	document.

